Chương này mô tả những cơ chế giúp tai nghe được các sóng âm, phân biệt được các tần số âm thanh, và truyền thông tin thính giác vào trong hệ thống thần kinh trung ương, nơi ý nghĩa của chúng được giải mã.
1.MÀNG NHĨ VÀ HỆ THỐNG XƯƠNG CON SỰ DẪN TRUYỀN ÂM THANH TỪ MÀNG NHĨ TỚI ỐC TAI
Hình 53-1 thể hiện màng nhĩ(thường gọi là eardrum) và các xương con, các xương này dẫn truyền âm thanh từ màng nhĩ qua tai giữa đến ốc tai (tai trong). Cán xương búa gắn vào màng nhĩ. Xương búa được nối với xương đe bởi một dây chằng rất nhỏ, vì vậy khi xương búa chuyển động thì xương đe cũng chuyển động theo. Mỏm của xương đe khớp nối với thân xương bàn đạp, và nền xương bàn đạp nằm đối diện với mê đạo màng của ốc tai trên đường vào của cửa sổ bầu dục.
Đầu của cán xương búa được gắn vào rốn nhĩ, và điểm này luôn được kéo bởi cơ căng màng nhĩ – cơ này giữ cho màng nhĩ luôn được căng. Điều này cho phép những rung động âm thanh trên bất cứ phần nào của màng nhĩ cũng được truyền tới các xương con,điều này không xảy ra nếu màng nhĩ trùng.
Các xương con của tai giữa được treo bởi các dây chằng trong đó xương búa và xương đe kết hợp để hoạt động như một đòn bẩy, điểm tựa của nó ở ranh giới của màng nhĩ.
Khớp nối giữa xương đe và xương bàn đạp khiến xương bàn đạp (1) đẩy về phía trước trên cửa sổ bầu dục và dịch trong ốc tai ở trong cửa sổ mỗi khi màng nhĩ di chuyển vào trong và (2) kéo ngược lại khi xương búa di chuyển ra phía ngoài.
“Sự Phối Hợp Trở Kháng bởi Hệ Thống Xương Con.Biên độ vận động của nền xương bàn đạp với mỗi rung động âm thanh chỉ bằng ba phần tư biên độ của cán xương búa. Do đó hệ thống đòn bẩy xương con không làm tăng khoảng vận động của xương búa như trước đây vẫn nghĩ.Thay vào đó, hệ thống này làm giảm khoảng cách nhưng làm tăng lực lên 1.3 lần. Thêm nữa diện tích màng nhĩ vào khoảng 55 mm2, trong khi diện tích của xương bàn đạp trung bình là 3.2 mm2. Sự khác biệt 17 lần về diện tích và 1.3 lần về lực của hệ thống đòn bẩy làm tổng lực tác dụng lên dịch của ốc tai gấp 22 lần so với tổng lực mà sóng âm tác dụng lên màng nhĩ. Bởi vì dịch trong ốc tai có quán tính lớn hơn nhiều so với không khí nên việc tăng lực tác động là cần thiết để có thể tạo được sự chuyển động của dịch. Vì vậy, màng nhĩ và hệ thống xương con mang lại sự phối hợp trở kháng (impedance matching) giữa sóng âm trong không khí và rung động âm thanh trong dịch của ốc tai. Thật vậy, sự phối hợp trở kháng vào khoảng 50 – 75% cho âm thanh có tần số từ 300 đến 3000 chu kì/giây, điều này cho phép sử dụng được gần như toàn bộ năng lượng của sóng âm truyền tới.
Trong trường hợp không có hệ thống xương con và màng nhĩ, sóng âm vẫn có thể đi qua trực tiếp qua không khí của tai giữa và đi vào ốc tai tại cửa sổ bầu dục. Tuy nhiên độ nhạy của thính giác sẽ giảm 15-20% so với việc truyền âm qua xương con – tương đương với việc giảm từ mức trung bình đến mức gần như không cảm nhận được.
Sự giảm âm bởi sự co cơ căng màng nhĩ và cơ bàn đạp. Khi âm thanh lớn được truyền qua hệ thống xương con và từ đó truyền vào hệ thần kinh trung ương, một phản xạ xảy ra sau một thời gian tiềm ẩn chỉ có 40-80 ms để gây co cơ bàn đạp và cơ căng màng nhĩ ở một mức độ thấp hơn. Cơ căng màng nhĩ kéo cán xương bùa vào trong trong khi cơ bàn đạp kéo xương bàn đạp ra ngoài. Hai lực này đối kháng nhau và nhờ đó làm cho toàn bộ hệ thống xương con trở nên tăng độ cứng, vì vậy làm giảm đáng kể sự dẫn truyền qua xương con của các âm thanh tần số thấp, chủ yếu là tần số dưới 1000 chu kì/giây.
Phản xạ giảm âm (attenuation reflex) có thể làm giảm cường độ của âm thanh dẫn truyền có tần số thấp hơn từ 30 đến 40 decibel, điều này làm nên sự khác biệt tương tự như giữa một giọng nói to và một lời thì thầm. Cơ chế này được tin rằng có 2 chức năng: bảo vệ ốc tai khỏi những rung động gây hại bởi những âm thanh quá lớn và lọc những âm thanh tần số thấp trong môi trường ồn ào. Việc lọc âm giúp loại bỏ đa số những âm thanh ồn ào từ môi trường giúp con người có thể tập trung vào những âm thanh trên 1000 chu kì/giây, đó là dải tần chứa hầu hết các thông tin thích hợp khi giao tiếp. Một chức năng khác của cơ căng màng nhĩ và cơ bàn đạp là giảm sự nhạy cảm thính giác với chính giọng nói của mình. Tác dụng này chịu sự chi phối của tín hiệu thần kinh thứ hai được truyền tới các cơ này cùng lúc với não kích hoạt cơ chế giọng nói.
SỰ TRUYỀN ÂM QUA XƯƠNG
Bởi vì tai trong, hay ốc tai, nằm trong một khoang của xương thái dương, gọi là mê đạo xương, nên khi hộp sọrung có thể làm chuyển động các dịch trong ốc tai. Vì vậy, trong điều kiện thích hợp, một âm thoa hay một máy điện rung được đặt vào bất cứ ụ nhô nào của xương sọ, mà đặc biệt là mỏm chũm ở gần tai, ta đều nghe được âm thanh. Tuy nhiên, năng lượng có sẵn thậm chí ở âm thanh lớn trong không khí cũng không đủ để nghe thấy qua sự dẫn truyền qua xương, trừ khi có một thiết bị khuyếch đại âm thanh được đặt trong xương.
2.ỐC TAI GIẢI PHẪU CHỨC NĂNG CỦA ỐC TAI
Ốc tai là một hệ thống các ống xoắn, được thể hiện trong Hình 53-1 và mặt cắt ngang trong Hình 53-2 và 53-3. Nó bao gồm 3 ống xoắn nằm cạnh nhau: (1) thang tiền đình, (2) thang giữa (ống ốc tai) và (3) thang nhĩ. Thang tiềnđình và thang giữa được ngăn cách bởi màng Reissner’s(còn gọi là màng tiền đình), xem Hình 53-3; thang nhĩ và thang giữa được ngăn bởi màng nền. Trên bề mặt màng đáy có cơ quan Corti,nó chứa nhiều tế bào cảm thụ thính giác và tế bào lông. Chúng là cơ quan nhận cảm cuối cùng tạo ra các xung động thần kinh để đáp ứng với rung động âm thanh.
Hình 53-4 sơ đồ các bộ phận chức năng của ống ốc tai trong truyền âm. Chú ý rằng màng Reissner’s không có trên hình. Màng này rất mỏng và có thể bỏ đi mà không làm cản trở sự đẫn truyền của âm thanh từ thang tiền đình đến vào thang giữa. Vì vậy, về mặt dẫn truyền qua dịch của âm thanh, thang tiền đình và thang giữa được coi là một buồng . (Tầm quan trọng của màng Reissner’s là duy trì một dạng đặc biệt của dịch trong thang giữa, cần thiết để tế bào cảm thụ thính giác có lông đảm bảo chức năng bình thường, điều này được thảo luận trong chương sau.)
Rung động âm thanh đến thang tiền đình từ nền xương bàn đạp ở cửa sổ bầu dục. Nền che bề mặt cửa sổ và được gắn với bờ của cửa sổ bằng một vòngsợi lỏng lẻo, vì vậy nó có thể chuyển động vào trong và ra ngoài cùng với sóng âm. Khi di chuyển vào trong nó làm dịch di chuyển về phía trước trong thang tiền đình và thang giữa, ngược lại làm dịch di chuyển về phía sau.
Màng nền và sự cộng hưởng trong ốc tai.
Màng nền là màng sợi ngăn cách thang giữa và thang nhĩ.Nó bao gồm 20,000 đến 30,000 sợi nền, nó xuất phát từ trung tâm xương của ốc tai, gọi là trụ ốc, đến thành ngoài.Các sợi xơ này cứng, đàn hồi, mảnh,nó gắn một đầu vào cấu trúc xương trung tâm của ốc tai (các trụ ốc) các đầu xa thì không, trừ khi đầu xa được gắn vào màng nền lỏng lẻo. Bởi vì các sợi này cứng và tự do ở một đầu nên chúng có thể rung như lưỡi gà của kèn harmonica.
Chiều dài của màng nền tăng dần từ cửa sổ bầu dục và đi từ nền của ốc tai đến đỉnh (khe tận xoắn ốc), chiều dài tăng từ 0.04 mm ở gần cửa sổ bầu dục và 0.5 mm ở cửa sổ tròn, chiều dài tăng 12 lần.
Đường kính của sợi giảm từ cửa sổ bầu dục tới khe tận xoắn ốc nên toàn bộ độ cứng của chúng giảm hơn 100 lần. Kết quả là các sợi cứng và ngắn ở gần cửa sổ bầu dục của ốc tai rung tốt nhất ở tần số rất cao, trong khi các sợi dài và mềm ở gần đỉnh ốc tai rung tốt nhất ở tần số rất thấp.
Vì vậy, sựcộng hưởng tần số cao của màng nền diễn ra ở gần nền ốc tai, nơi sóng âm đến ốc tai qua cửa sổ bầu dục. Tuy nhiên, sự cộng hưởng tần số thấp diễn ra gần khe tận xoắn ốc, chủ yếu do các sợi mềm và còn vì phải làm khối lượng dịch rung lên dọc theo ống ốc tai.
3.SỰ DẪN TRUYỀN CỦA SÓNG ÂM TRONG ỐC TAI – “SÓNG CHẠY”
Khi nền xương bàn đạp đẩy cửa sổ bầu dục vào trong, cửa sổ trònphải phồng ra ngoài bởi vì ốc tai được giới hạn mọi phía bởi các thành xương. Lúc đầu sóng âm tác động đến màng nền tại nền của ốc tai để uốn cong theo phương của cửa sổ tròn. Tuy nhiên, sức căng đàn hồi được tạo nên từ các sợi nền khi chúng uốn cong về phía cửa sổ tròn và nó tạo nên một làn sóng chất dịch “chạy” dọc theo màng nền đến khe tận xoắn ốc.
Hình 53-5A chỉ ra sự di chuyển của sóngcó tần số cao xuống màng nền, Hình53-5B chỉ ra sóng có tần số trung bình, Hình 53-5C chỉ ra sóng có tần số rất thấp. Sự di chuyển của sóng dọc theo màng nền có thể so sánh với sóng áp lực dọc theo thành động mạch, điều này đã được thảo luận trongChương 15, nó cũng có thể so sánh giống với sóng chạy trên mặt nước.
4.CÁC KIỂU RUNG CỦA MÀNG NỀN ĐỐI VỚI CÁC TẦN SÔ ÂM THANH KHÁC NHAU.
Chú ý trong Hình53-5 là các kiểu dẫn truyền khác nhau của sóng âm với các tần số khác nhau. Mỗi sóng ít kết hợp ở điểm bắt đầu nhưng trở nên kết hợp mạnh mẽ khi chúng tới được màng nền, nơi có sự cộng hưởng tự nhiên tần số bằng với tần số của các sóng riêng phần. Tại điểm này, màng nền có thể rung ngược trở lại và về phía trước một cách thoải mái khi năng lượng của sóng đã hết. Vì vậy, sóng đã hết tại điểm này và không thể tiếp tục chạy dọc màng nền.
Vì vậy, một sóng tần số cao chỉ có thể đi một quãng ngắn dọc theo màng nền trước khi nó tới điểm cộng hưởng của nó và dừng lại, một sóng âm có tần số trung bình đi được nửa quãng đường và dừng lại, và một sóng âm có tần số rất thấp đi hết quãng đường dọc theo màng nền.
Một đặc tính khác của sóng chạy là nó chạy nhanh dọc đoạn đầu của màng nền nhưng trở nên chậm dần khi nó đi vào sâu trong ốc tai. Nguyên nhân của sự khác biệt này là hệ số đàn hồi cao của sợi nền gần cửa sổ bầu dục và giảm dần hệ số khi đi xa hơn trong ốc tai. Tốc độ dẫn truyền nhanh lúc đầu của sóng âm cho các sóng có tần số cao có thể đi đủ xa trong ốc tai để lan tỏa và phân biệt với sóng khác trên màng nền. Nếu không, tất cả các sóng tần số cao sẽ bị hòa lẫn vào nhau chỉ trong 1 mm đầu tiên và không thể phân biệt tần số của chúng.
Dạng biên độ rung của màng nền.
Đường vẽ cong trên Hình 53-6A cho thấy vị trí của sóng âm trên màng nền khi xương bàn đạp (a) đẩy vào trong, (b) bị đẩy trở lại điểm cân bằng,(c) đẩy ra ngoài,và (d) bị đẩy trở lại điểm cân bằng nhưng đang chuyển động vào trong. Vùng bóng in mờ xung quanh các sóng khác nhau này cho thấy độ rộng của sự rung màng nền trong suốt một chu kì rung hoàn chỉnh. Đây là dạng biên độ rungcủa màng nền cho tần số âm thanh cụ thể.
Hình 53-6B cho thấy dạng biên độ rung của các tần số khác nhau, chứng minh rằng biên độ cực đại của âm thanh ở tần số 8000 chu kì/ giây xảy ra ở gần nền của ốc tai, trong khi âm thanh có tần số thấp hơn 200 chu kì/ giây đạt cực đại ở đỉnh của màng nền, nơi thang tiền đình mở vào thang nhĩ.
Cách thức chính để các tần số âm thanh có thể phân biệt được với nhau là dựa trên vùng kích thích cực đại của sợi thần kinh của cơ quan Corti nằm trên màng nền, được chứng minh trên hình tiếp theo.
5.CHỨC NĂNG CỦA CƠ QUAN CORTI
Cơ quan Corti được thể hiện trong Hình 53-3 và 53-7, là cơ quan nhận cảm phát ra xung thần kinh khi đáp ứng vớisự rung của màng nền. Chú ý rằng cơ quan Corti nằm trên bề mặt của sợi nền và màng nền. Các thụ thể nhận cảm trong cơ quan Corti gồm 2 loại tế bào thần kinh được gọi là tế bào lông- một hàng tế bào lông ở trong, gồm 3500 tế bào có đường kính khoảng 12 micro mét, và 3 đến 4 hàng tế bào lông ở bên ngoài, gồm 12,000 tế bào có đường kính chỉ khoảng 8 micro mét. Đáy và các mặt bên của tế bào lông synap với mạng lưới đầu tận cùng của thần kinh ốc tai. Khoảng 90-95% các đầu tận này tiếp xúc với tế bào lông ở trong, điều này nhấn mạnh tầm quan trọng của chúng trong việc thu nhận âm thanh.
Sợi thần kinh được kích thích bởi tế bào lông được dẫn tới hạch xoắncủacơ quan Corti, nó nằm trong trungtâm của ốc tai. Các tế bào thần kinh hạch xoắn có các sợi trục – khoảng 30,000 sợi – đi đến thần kinh ốc tai sau đó đi vào hệ thần kinh trung ương ở mức tủy sống cao hơn. Mối quan hệ của cơ quan Corti với hạch xoắn và với thần kinh ốc tai được thể hiện trên Hình 53-2.
Sự kích thích của tế bào lông. Chú ý rằng trong Hình 53-7 các lông nhỏ- cácstereocilia, nhô lên trên từ các tế bào lông chạm vào hoặc được nhúng vào chất keo phủ trên bề mặt màng mái, nó nằm trên lông mao của thang giữa. Những tế bào lông này giống với tế bào lông tìm thấy trong vết, mào của bóng trong bộ máy tiền đình, điều này được thảo luận trong Chương 56. Khi uốn cong tế bào lông theo một hướng thì khử cực, uốn theo chiều ngược lại thì ưu phân cực.Nó lần lượt kích thích các sợi thần kinh thính giác synap với đáy của chúng.
Hình53-8 chỉ ra cơ chế kích thích đầu tận sợi lông khi màng nền rung. Đầu ngoài của tế bào lông được gắn chặt với một cấu trúc rắn chắc là một tấm dẹt, gọi là tấm lưới,được nâng đỡ bởi 3 que Corti, nó được gắn chặt với các sợi nền. Các sợi nền, que Corti và tấm lưới chuyển động như một đơn vị thống nhất.
Sự di chuyển lên trên của sợi nền làm rung tấm lưới lên trên và vào trong theo hướng trụ ốc. Sau đó, màng nền di chuyển xuống dưới, tấm lưới đu đưa xuống dưới và ra ngoài. Sự chuyển động vào trong và ra ngoài khiến lông của tế bào lông cắt qua cắt lại với màng mái. Vì vậy, tế bào lông được kích thích khi màng nền rung.
Tín hiệu thính giác được truyền chủ yếu nhờ các tế bào lông bên trong.
Mặc dù tế bào lông ở ngoài nhiều gấp 3 đến 4 lần tế bào lông ở trong nhưng khoảng 90% các sợi thần kinh thính giác được kích thích bởi tế bào lông ở trong. Tuy nhiên,nếu tế bào lông ở ngoài bị phá hủy trong khi tế bào lông ở trong vẫn đầy đủ chức năng thì thính lực vẫn bị giảm rất nhiều. Vì vậy, người tacho rằng tế bào lông bên ngoài chi phối sự nhạy cảm của tế bào lông bên trong ở những cao độ khác nhau, hiện tượng này gọi là “tính nhịp điệu” của hệ thống receptor. Để ủng hộ nhận định này, có một lượng lớn các sợi thần kinh ly tâm chạy từ thân não tới vùng xung quanh các tế bào lông bên ngoài. Sự kích thích các sợi thần kinh này có thể làm các tế bào lông bên ngoài ngắn lại và thay đổi độ cứng của chúng. Những tác dụng này gợi ý một cơ chế thần kinh ly tâm trong sự chi phối sự nhạy cảm của tai với các cao độ âm thanh khác nhau, được kích hoạt qua các tế bào lông bên ngoài.
Điện thế receptor tế bào lông vàsự kích thích của các sợi thần kinh thính giác. Các stereocilia (nó là các lông nhô ra từ đuôi tế bào lông) là những cấu trúc cứng bởi vì chúng có một khung protein rắn chắc.Mỗi tế bào lông có khoảng 100 stereocilia trên đỉnh tế bào. Những stereocilia này trở nên dài dần về phía bên tế bào khi càng xa trụ ốc, và ngọn của stereocilia ngắn được gắn với mặt sau của stereocilia liền kề nó bởi các sợi mảnh. Vì vậy, mỗi khi lông mao uốn cong về hướng các stereocilia dài thì ngọn các stereocilia ngắn sẽ được kéo ra ngoài khỏi bề mặt của tế bào lông. Điều này tạo ra một cơ chế mở ra 200 đến 300 cation- kênh dẫn, cho phép sự hoạt động nhanh chóng của sự vận chuyển tích cực các ion Kali từ dịch ở quanh thang giữa vào trong stereoclia, tạo nên sự khử cực màng tế bào lông.
Vì vậy, khi sợi nền uốn cong về hướng thang tiền đình, các tế bào lông sẽ khử cực và ngược lại khi cong về phía đối diện các tế bào sẽ ưu phân cực, bằng cách ấy sẽ tạo ra một điện thế receptor của tế bào lông nó sẽ lần lượt kích thích các đầu tận của dây thần kinh ốc tai synap với đáy tế bào lông. Được cho rằng các chất dẫn truyền thần kinh tác dụng nhanh được giải phóng bởi các tế bào lông ở các synap trong quá trình khử cực. Có thể chất dẫn truyền là glutamate nhưng không chắc chắn.
Điện thế tai trong. Để giải thích đầy đủ hơn vềđiện thế được sinh ra bởi tế bào lông, chúng ta cần giải thích một hiện tượng khác gọi là điện thế tai trong(endocochlear potential).Thang giữa được đổ đầy bởi một chất lỏng gọi lànội dịch, khác với ngoại dịch có mặt ở thang tiền đình và thang nhĩ.Thang nhĩ và thang tiền đình thông trực tiếp với khoang dưới nhện quanh não bộ, vì vậy ngoại dịch gần như đồng nhất với dịch não tủy. Ngược lại, nội dịch ở trong thang giữa là một dịch hoàn toàn khác, được tiết ra bởi vân mạch (stria vascularis), một vùng mạch máu gồ cao trên thành ngoài của thang giữa. Nội dịch chứa nồng độ cao kali và nồng độ thấp natri, nó trái ngược hoàn toàn với ngoại dịch.
Một điện thế khoảng +80 millivon được duy trì liên tục giữa nội dịch và ngoại dịch, với bản dương bên trong và bản âm bên ngoài thang giữa. Nó được gọi là điện thế taitrong, và nó được phát sinh bởi sự bài tiết liên tục ion dương Kali vào trong thang giữa bởi vân mạch.
Tầm quan trọng của điện thế tai trong là đỉnh của tế bào lông nhô qua màng lưới và được tắmtrong dịch nội bào của thang giữa, trong khi ngoại dịch ngâmphần dưới của tế bào lông. Hơn nữa, tế bào lông có một điện thế âm nội bào khoảng −70 millivon đối với dịch ngoại bào nhưng với dịch nội bào vào khoảng −150 millivon ở mặt trên nơi các lông xuyên qua màng lưới vào trong nội dịch.Người ta tin rằng điện thế cao ở đầu các stereocilia này làm tăng thêm sự nhạy cảm của các tế bào, do đó làm tăng khả năng đáp ứng với các âm thanh yếu nhất.
6.ĐỊNH NGHĨA CỦA TẦN SỐ ÂM THANH—NGUYÊN LÝ “VỊ TRÍ”
Từ những bàn luận trước trong chương này, rõ ràng rằng âm thanh tần số thấp gây ra sự vận động tối đacủa màng nền ở gần đỉnh ốc tai và âm thanh tần số cao làm vận động màng nền gần nền ốc tai. Âm thanh có tần số trung bình tác động lên màng nền ở khoảng giữa của hai đầu tận cùng. Hơn nữa, có một cấu trúc không gian của sợi thần kinh trong ốc tai, dọc theo từ ốc tai lên vỏ não. Sự ghi nhận tín hiệu trong bộ máy thính giác của thân não và trong vùngthu nhậnthính giác của vỏ não cho thấy rằng mỗi neutron của não được kích hoạt bởi một tần số âm thanh của riêng nó. Vì vậy, phương pháp chủyếuđể hệ thần kinh phát hiện ra các tần số âm thanh khác nhau là xác định vị trí trên màng nền nơi mà nó được kích thích nhiều nhất, nó được gọi là nguyên lý vị trí trong xác định tần số âm thanh.
Trở lại Hình 53-6, ta có thể thấy rằng đầu cuối củamàng nền ở trụ ốc được kích thích bởi tất cả âm thanh có tần số dưới 200 chu kì/giây. Vì vậy, sẽ trở nên khó hiểu từ nguyên lý vị trí làm sao ta có thể phân biệt giữa các âm thanh có tần số thấp từ 200 trở xuống 20. Những âm thanh tần số thấp này được thừa nhận rằng được phân biệt chủ yếu bởi thuyết volleyhoặc nguyên tắc tần số. Đó là những âm thanh tần số thấp, từ 20 đến 1500 và đến 2000 chu kì/ giây, có thể gây ra một loạt xung thần kinh xảy ra đồng thời với cùng tần số, và những xung này này được truyền vào trong nhân ốc tai của não bằng thần kinh ốc tai. Người ta tiếp tục giả thuyết rằng nhân ốc tai có thể phân biệt được các tần số âm thanh khác nhau của chuỗi các xung. Thực tế rằng sự phá hủy toàn bộ nửa đỉnh ốc tai, phá hủy màng nền nơi các âm thanh tần số thấp thường được nhận biết cũng không làm mất đi hoàn toàn khả năngphân biệt các âm thanh tần số thấp.
7.ĐỊNH NGHĨA CỦA CƯỜNG ĐỘ
Cường độ được xác định bởi hệ thính giác bằng ít nhất ba cách.
Một là khiâm thanh lớn hơn, biên độ rung của màng nền và tế bào lông cũng tăng theo vì vậy tế bào lông kích thích đầu thần kinh tận cùng với tốc độ nhanh hơn.
Hai là, khi biên độ rung tăng lên, nólàm cho càng nhiều tế bào lông trên rìa của phần cộng hưởng của màng nền được kích thích, vì vậy gây ra sự cộng kích thích theo không gian—đó là sự dẫn truyền qua nhiều sợi thần kinh hơn.
Ba là, tế bào lông bên ngoài không được kích thích đáng kể cho đến khi màng nền rung đạt tới cường độ cao, và sự kích thích của các tế bào có thể báo cho hệthần kinh biết âm thanh lớn.
Nhận biết sự thay đổi cường độ— Quy luật năng lượng. Như đã được làm rõ trong Chương 47, người ta diễn giải sự thay đổi về cường độ của kích thích cảm giác là tương quan với một hàm nghịch đảo lũy thừa củacường độ thực tế. Còn đối với âm thanh, cảm giác nhận được tương đương với căn bậc ba của cường độ âm thanh thực tế. Để diễn giải khái niệm này bằng cách khác, tai có thể phân biệt sự khác nhau về cường độ âm thanh từ tiếng thì thào nhẹ nhất cho đếnnhững tiếng ồn lớn nhất có thể, tương ứng với tăng một tỷ tỷlần về năng lượng âm thanh hoặc một triệu lầnvề biên độ vận động của màng nền. Chưa hết, tai nhậnthấy nhiều khác biệt hơn vềmức âm thanhnhưthay đổi xấp xỉ 10,000 lần. Vì vậy, cường độ âm thanh đã được “nén” rất nhiều bởi hoạt động tri giác âm thanh của hệ thính giác, điều này cho phép một người có thể phân biệt được sự khác nhau về cường độ âm thanh trong một phạm vi rộng hơn nhiều nếu như cường độ âm thanh không được nén xuống.
Đơn vị decibel. Bởi vì sự thay đổi trong cường độ âm thanh màtai cóthểnghe và phân biệt được, cường độâm thanh thường được thể hiện bằng hàm logarit của cường độ thực tế của chúng. Tăng 10 lần năng lượng âm thanh được gọi là 1 bel và0.1 bel gọi là 1 decibel. Một decibel tương ứng với tăng 1.26 lần về năng lượng âm thanh.
Một lý do khác để sử dụng hệ đơn vị decibel để thể hiện sự thay đổi về độ lớn, trong phạm vi cường độ âm thanh bình thường trong giao tiếp, tai có thể phân biệt được sự thay đổi khoảng 1 decibel về cường độ âm thanh.
Ngưỡng nghe âm thanh tại những tần số khác nhau.Hình 53-9 cho thấy ngưỡng áp suất mà tại đó âm thanhcó tần số khác nhau chỉ có thể vừa đủ nghe bằng tai. Hình này chứng minh rằng một âm thanh có tần số3000 chu kì/giây có thể được nghe thậm chí khi cường độ của nó thấp bằng 70 decibel dưới 1 dyne/cm2 mức áp suất âm,bằng 10 phần triệu microwatt mỗi centimet vuông. Ngược lại, một âm thanh có tần số 100 chu kì/giây có thể được phát hiện khi cường độ của nó lớn gấp 10,000 lầnnhư này.
Phạm vi tần số của thính giác. Tần số âm thanh màmột người trẻ tuổi có thể nghe là từ 20 đến 20,000 chu kì/giây.Mặc dù vậy, trở lại Hình 53-9, ta có thể thấy rằng phạm vi tần số âm thanh phụ thuộc nhiều vào độ lớn âm thanh.Nếu độ lớn là 60 decibeldưới 1 dyne/cm2 mức áp suấtâm thanh, thì phạm vi âm thanh vào khoảng 500 đến 5000 chu kì; chỉ âm thanh có cường độ lớn mới đạt được phạm vi toàn bộ từ 20 đến 20,000 chu kì. Ở tuổi cao, phạm vi tần số này thường thu hẹp hơn vào khoảng từ 50 đến8000 chu kì/giây hoặc ít hơn, điều này được thảo luậnsau trong chươngnày.
8.CƠ CHẾ THÍNH GIÁC TRUNG ƯƠNG ĐƯỜNGTRUYỀN THẦN KINH THÍNH GIÁC
Hình 53-10 cho thấy đường truyền thính giác. Sợi thần kinh từ hạch xoắn của Corti dẫn đến nhân ốc lưng và nhân ốc bụng nằm trong phần trên tủy sống. Tại đây, tất cả các sợi synap với neutron thứ hai và chúng chủ yếu bắt chéo qua bên đối diện của thân não để kết thúc ở nhân trám trên. Mộtvài sợi thứ hai cũng đi qua nhân trám trên ở cùng bên.
Từ nhân trám trên, đường thính đi qua dải cảm giác bên. Một vài sợ tận cùng tại nhân của dải cảm giác bên,nhưng nhiều sợi đi vòngqua nhân này và chạy tới gò dưới, nơi hầu như tất cả các sợi thính giác đều synap.Từ đây, đường thính đi tới nhân thể gối,nơi tất cả các sợi đều synap. Cuối cùng đường thính đi lên qua tia thính giác tới vỏ não thính giác, nằm chủ yếu ở hồi trên thùy thái dương.
Một vài điểm quan trọng cần chú ý. Một là,tín hiệu đến từ hai tai được dẫn truyền qua đường thính của cả hai bên não, với sự dẫn truyền ưu thế hơn ở đường thính đối bên.Ở ít nhất ba vị trí trên thân não xảy ra sự bắt chéo giữa hai đường thính: (1) trong thể thang, (2) ở mép giữa hai nhân của dải cảm giác bên, và(3) ở mép nối hai gò dưới.
Thứ hai, nhiều sợi bên từ bộ máy thính giác đi trực tiếp đến hệ lưới hoạt hóa của thân não. Hệ này hoạt hóa lên thân não và hoạt hóa xuống vào tủy sống và hoạt hóa toàn bộ hệ thần kinh để đáp ứng với các âm thanh lớn.Các sợi bên khác đi tới thùy nhộng tiểu não, nơi sẽ được hoạt hóa ngay lập tức trong trường hợp có tiếng ồn đột ngột.
Thứ ba,sự định hướng không gian cao độ được duy trì trong bộ máy các sợi từ ốc tai cho đến vỏ não. Thực tế rằng có ba cấu trúc không gian nơi tận cùng của các âm thanh có tần số khác nhau trong nhân ốc, hai cấutrúc trong gò dưới, một cấu trúc cho các âm thanh có tần số riêng trong vỏ não thính giác, và ít nhất nămcấu trúc chưa xác định khác trong vỏ não thính giác và vùng kết hợp thính giác.
Tốc độ kích thích tại các mức khác nhau của đường thính. Một tế bào thần kinh đi vào nhân ốc tai có thể kích thích ở tốc độ lên tới ít nhất 1000 lần mỗi giây, với tốc độ được quyết định chủ yếu bởi độ lớn của âm thanh. Ở mỗi tần số âm thanh từ 2000 đên 4000 chu kì/giây, các xung thần kinh thính giác thường xảy ra cùng lúc với các sóng âm, nhưng điều này không cần thiết với mọi sóng âm.
Trong trung tâm thính giác của thân não, sự kích thích thường không còn đồng bộ với tần số âm thanh trừ khi với âm thanh có tần số dưới 200 chu kì/giây. Trên mức của gò dưới, thậm chí sự đồng bộ này đã mất. Sự phát hiện này cho thấy tín hiệu âm thanh không phải được truyền không đổi trực tiếp từ tai đến các mức cao hơn của não; thay vào đó, thông tin từ tín hiệu âm thanh bắt đầu được phân tíchtừ sự dẫn truyền các xung ở mức thấp như nhân ốc tai. Chúng ta sẽ nói nhiều hơn vấn đề này sau, đặc biệt trong mối quan hệ với sự tri giác vềhướng âm thanh đến.
9.CHỨC NĂNG THÍNH GIÁC CỦA VỎ NÃO
Khu vực đối chiếu của tín hiệu thính giác trên vỏ não được thể hiện trên Hình 53-11, chứng minh rằng vỏ não thính giác nằm chủ yếu trên hồi thái dương trên và còn trải rộng ra cả mặt bên của thùy thái dương,trùm lên thùy đảo,và thậm chí còn phủ lên phần bên của nắp.
Hai phần riêng được thể hiện trong Hình 53-11: vỏ não thính giác sơ cấpvà vỏ não kết hợp thính giác(còn được gọi là vỏ não thính giác thứ cấp). Vỏ não thính giác sơ cấp được kích thích trực tiếp bởi các xung từ thể gối giữa,trong khi vùng kết hợp thính giác được kích thích sau đó bởi các xung từ vỏ não thính giác sơ cấp, cũng như bởi một vài xung từvùng kết hợp đồi thị liền kề thể gối giữa.
Sự nhận thức tần số âm thanh trong vỏ não thính giác sơ cấp. Ít nhất sáu bản đồtần số đã được mô tả trongvỏ não thính giác sơ cấp và vùng kết hợp thính giác.Trong mỗi bản đồ, âm thanh tần số cao kích thích neuron ở một đầu của bản đồ trong khi âm thanh tần số thấp kích thích các neuron ở đầu đối diện.Trong hầu hết các bản đồ, vùng âm thanh tần số thấp nằm ở phía trước như được thể hiện trong Hình 53-11, và vùng âm thanh tần số cao nằm ở phía sau. Tuy nhiên điềunày không hoàn toàn đúng với tất cả các bản đồ.
Tại sao vỏ não thính giác có nhiều bản đồ tần số khác nhau? Câu trả lời có lẽ là mỗi vùng riêng biệt này phân tích các đặc tính riêng biệt của âm thanh. Ví dụ như một trong những bản đồ lớn trong vỏ não thính giác sơ cấp gần như phân biệt một cách chắc chắn về tần số âm thanh và cho ta cảm nhận về cao độ âm thanh. Bản đồ khác có thể để phát hiện hướng âm thanh đến. Các vùng vỏ não thính giác khác phát hiện âm sắc đặc biệt, ví dụ như sự phát ra âm thanh đột ngột, hoặc có thể phát hiện sự thay đổi trầm bổng của âm thanh, ví dụ nhưphân biệttiếng ồn ào với một âm thanh có tần số thuần nhất.
Phạm vi tần số mà mỗi neuron riêng lẻ trong vỏ não thính giác đáp ứng hẹp hơn nhiều so với neuron trong ốc tai và nhân chuyển tiếp ở thân não. Trở lại Hình 53-6B, chú ý rằng màng nền gần nền ốc tai được kích thích bởi mọi tần số âm thanh, và trong nhân ốc tai dải âm thanh giống vậy được tìm thấy. Chưa hết, khi mà sự kích thích đi tới vỏ não, phần lớn neuron đáp ứng âm thanh đáp lại các tần số dải hẹp hơn là các tần số dải rộng. Vì vậy, dọc theo đường thính sự xử lý đã làm cho tần số âm thanh trở nên “sắc nét” hơn. Người ta tin rằng tác dụng làm rõ nét âm thanh chủ yếuđược gây nên bởi hiện tượng ức chế bên, điều này đã được thảo luận trong Chương 47 về mối quan hệ với cơ chế truyền tin trong các dây thần kinh. Đó là sự kích thích của ốc tai tại một tần số sẽ ức chế các tần sốâm thanh ở hai bên tai của tần số sơ cấp, sự ức chế này gây nên bởi các sợi bên đi chếch ra khỏi đường truyền thính giác và gây ức chế trên đường thính giác liền kề. Một tác dụng tương tự đã được chứng minh trong việc làm rõ nét hình ảnh bản thể,hình ảnh thị giác, và các loại cảm giác khác.
Nhiều neuron trong vỏ não thính giác, đặc biệt trongvỏ não kết hợp thính giác, không chỉ đáp ứng với các âm thanh có tần số riêng biệt ở tai. Người ta tin rằng các neuron này “kết hợp” các tần số âm thanh khác nhau với một tần số khác hoặc kết hợp thông tin âm thanh với thông tin từ các vùng giác quan khác của vỏ não. Thật vậy, vùng đỉnh của vỏ não thính giác phần nào chồng lấp với vùng cảm giác thân thể II, điều này tạo cơ hội thuận lợi cho việc kết hợp thông tin thính giác với thông tin cảm giác thân thể.
Sự phân biệt các “dạng” âm thanh của vỏ não thính giác. Cắt hoàn toàn hai bên vỏnão thính giác không thể ngăn cản một con mèo haymột con khỉ phát hiện được âm thanh hoặc phản ứng lại theo cách thô lỗ với âm thanh. Tuy nhiên, nó làm giảm đáng kể hoặc đôi khi làm mất đi khả năng phân biệt các cao độ âm thanh khác nhau của con vật, đặc biệt là các dạng âm thanh. Vídụ như, một con vậtđược huấn luyện đểnhận ra sự kết hợp hay chuỗi cácâm thanh sẽ bắt chước theo một dạng cụ thể, nhưng nó sẽ mấtkhả năng đó khi vỏ não thính giác bị phá hủy; hơn nữa, con vật không thể học lại kiểu đáp ứng này.Vì vậy, vỏ não thính giác đặc biệt quan trọng trong việc phân biệt các dạng âm điệu vàâm thanhnối tiếp.
Sự phá hủy cả hai vỏ não thính giác làm giảm rất lớn sự nhạy cảm thính giác. Sự phá hủy một bên chỉ làm giảm nhẹ khả năng nghe ở tai đối diện, nó không gây điếc bởi vì có nhiều sợi nối từ bên này sang bên kia trong đường dẫn truyền thính giác. Mặc dù vậy, nó làm ảnh hưởng đến khả năng của con người trong xác định vị trí của âm thanh, bởi vì tín hiệu so sánh ở hai bên vỏ não là yêu cầu cần thiết trong chức năng xác định vị trí.
Tổn thương vùng kết hợp thính giác mà khôngphải vùng vỏ não sơ cấp không làm giảm khả năng nghe và phân biệt âm thanh,hoặc thậm chí có thể phântích được ít nhất là các dạng âm thanhđơn giản. Mặcdù vậy, con người thường không thể hiểu ýnghĩacủa âm thanh nghe được. Ví dụ như khi tổn thương ở phần sau của hồi thái dương trên, vị trí này gọi là vùngWernickevà là một phần của vỏ não kết hợp thính giác, thường làm mất khả năng hiểu ý nghĩa của lời nói mặc dù chức năng nghe vẫn hoàn hảo và thậm chí có thể nhắc lại chúng.Những chức năng này của vùng kết hợp thính giác và mối quan hệ của chúng với toàn bộ chức năng khác của não sẽ được thảo luậnchi tiết hơn trong Chương58.
10.SỰ XÁC ĐỊNH HƯỚNG ĐẾN CỦA ÂM THANH
Một người xác định phương ngang mà âm thanh đến bởi hai hai cách chính: (1) thời gian trễ giữa sự tiếp nhận âm thanh vào tai này với sự tiếp nhận ở tai kia, và (2) sự khác biệt giữa cường độ âm thanh ở hai tai.
Cơ chế đầu tiên hoạt động tốt nhất ở tần số dưới 3000 chu kì/giây,và cơ chế thứ hai hoạt động tốt nhất ở các tần số cao hơn bởi vì đầu là chướng ngại lớn cho âm thanh ở những tần số này.Cơ chế thời gian trễ phân biệt hướng chính xác hơn nhiều so với cơ chế về cường độ âm bởi vì nó không phụ thuộc vào các yếu tố ngoại lai mà chỉ phụ thuộc vào khoảng thời gian chính xác giữa hai tín hiệu âm thanh. Nếu một người đang nhìn về phía trước hướng tới nguồn âm, âm thanh sẽ đến cả hai tai cùng lúc, trong khi nếu tai phải gần nguồn âm hơn tai trái, tín hiệu âm thanh từ tai phải truyền đến não trước tai trái.
Hai cơ chế trên không thể giúp ta biết được liệu âm thanh được phát ra từ đằng trước hay phía sau hoặc ở trên hay ở dưới.Sự phân biệt này có được chủ yếu nhờ hai loa tai. Hình dáng của loa tai làm thay đổi đặc tính của âm thanh đi vào tai, nó phụ thuộc vào hướng của âm thanh đến.Nó thay đổi đặc tính bằng cách nhấn mạnh các tần số âm thanh riêng biệt đến từ các hướng khác nhau.
Cơ chế thần kinh trong việc phát hiện hướng đến của âm thanh.
Sự phá hủy vỏ não thính giác ở cả hai bán cầu não, kể cả con người và các động vật có vú cấp thấp cũng gần như mất hết khả năng phát hiện hướng đến của âm thanh. Chưa hết, các neuron thần kinh phân tích sự định hướng này bắt đầu từ nhân trám trên trong thân não, mặc dù con đường thần kinh dọc từ những nhân này cho tới vỏ não cũng đòi hỏi phải hiểu được các tín hiệu âm thanh.
Nhân trám trên được chia thành hai phần: (1) nhân trám trên giữa và(2) nhân trám trên bên. Nhân bên liên quan với sự phát hiện hướng mà âm thanh đến, có lẽ là bởi sự so sánh đơn giản giữa sự khác nhau về cường độ của âm thanh khi tới hai tai và gửi một tín hiệu phù hợp tới vỏ não thính giác để có thể ước đoán hướng của nó.
Mặc dù vậy, nhân trám trên giữa có một cơ chế đặc biệt trong việc phát hiện thời gian trễgiữa các tín hiệu âm thanh khi đến hai tai. Nhân này bao gồm rất nhiều các neuron, mỗi neuron có hai sợi nhánh lớn, một sợi hướng về phía bên phải và một sợi hướng về phía bên trái. Tín hiệuâm thanh từ tai phải đập vào nhánh phải, và tín hiệu từ tai trái đập vào nhánh trái.Cường độ kích thích của mỗi neuron có độ nhạy cao với thời gian trễ đặc hiệu giữa hai tín hiệu âm thanh từ hai tai. Các neuron gần một viền của nhân thì đáp ứng tối đa với một thời gian trễ ngắn, trong khi nếu gần bên đối diện sẽ đáp ứng với thời gian trễ dài, còn những neuron ở giữa sẽ đáp ứng với thời gian trễtrung bình.
Vì vậy, một mô hình không gian của sự kích thích thần kinh được hình thành trong nhân trám trên giữa,với âm thanh đến trực tiếp từ phía trước của đầu sẽ kích thích tối đa một tập hợp các tế bào thần kinh trám và âm thanh từ các góc bên sẽ kích thích các neuron ở bên đối diện. Sự định hướng không gian này của các tín hiệu sau đó sẽ được truyền tới vỏ não thính giác,nơi mà hướng của âm thanh được xác định bởi vị trí các tế bào thần kinh bị kích thích tối đa. Người ta tin rằng những tất cả tín hiệu để xác định hướng của âm thanh này được truyền qua một con đường khác và kích thích một vị trí khác trên vỏ não so với đường dẫn truyền và vị trí cuối cùngcủa dạng âm điệu.
Cơ chế nhận biết hướng của âm thanh này lần nữa cho thấy cách thức màcác thông tincụ thể củacác tín hiệucảm giác được phân tích khi các tín hiệu truyền qua các mức khác nhau tronghoạt độngthần kinh. Trong trườnghợp này, đặc tính của hướng âm thanh là riêng rẽ với đặc tính của âm sắc tại ngang mức của nhân trám trên.
Các tín hiệu ly tâm từ hệ thần kinh trung ương tới các trung tâm thính giác thấp hơn
Con đường ly tâm đã được chứng minh tại mỗi mức của hệ thần kinh thính giác từ vỏ não tới ốc tai. Chặng đường cuối chủ yếu là từ nhân trám trên tới receptor cảm nhận âm trong tế bào lông của Corti.
Những sợi ly tâm này là các sợi ức chế. Thật vậy, sự kích thích trực tiếp các điểm riêng biệt trong nhân trám trên đã được chứng minh sẽ ức chế các vùng cụ thể của cơ quan Corti, làm giảmđộ nhạy âm thanh của chúng từ 15đến 20 decibel. Ta có thể hiểu một cách đơn giản là cơ chế này cho phép một người hướng sự chú ý tới các âm thanh đặc biệt trong khi loại ra những âm thanh khác.Đặc điểm này giống như khi một người nghe một nhạc cụ độc tấu trong một dàn nhạc giao hưởng
Các bất thường về thính giác
Phân loại điếc
Điếc thường được chia ra làm hai loại: (1) điếc gây ra bởi các tổn thương của ốc tai, thần kinh thính giác hoặc hệ thần kinh trung ương quanh tai, thường được phân vào nhóm “điếc thần kinh”, và (2)điếc gây ra bởi sự tổn thương các cấu trúc vật lý dẫn truyền âm thanh vào ốc tai của tai, loại này thường gọi là “điếc dẫn truyền”.
Nếu ốc tai hoặc thần kinh thính giác bị phá hủy thì sẽ bị điếc vĩnh viễn. Tuy nhiên, nếu ốc tai và thần kinh thính giác vẫn còn nguyên vẹn mà hệ màng nhĩ – xương con bị phá hủy hoặc bị cứng khớp(“đóng băng” bởi sự xơ hóa và vôi hóa), sóng âm vẫn có thể truyền đến ốc tai bằng phương tiện dẫn truyền qua xương từ máy phát ra âm thanh được gắn vào xương sọ phía trên của tai.
Âm kế. Để xác định bản chất của khuyết tật thính giác ta cần sử dụng “âm kế”. Khí cụ này là một ống nghe được kết nối với một hệ xương con điện tử có khả năng phát ra các âm thanh thuần khiết với phạm vi từ tần số thấp đến tần số cao, và nó được định cỡ sao cho âm thanh có mức cường độ bằng không tại mỗi tần số là âm lượng mà có thể vừa đủ nghe bằng tai thường. Một điều khiển âm lượng có thể tăng âm lượng trên mức 0. Nếu âm lượng phải được tăng tới 30 decibel hơn bình thường mới có thể nghe được thì đó được gọi là mất thính lực 30 decibel ở tần số đó.
Thực hiện thử thính lực cần sử dụng một âm kế, một lần thử 8 đến 10 tần số bao phủ được phổ thính giác và mất thính lực được xác định tại mỗi tần số. Sau đó nó được ghi ra thành thính lực đồ, Hình 53-12 và 53-13, mô tả mất thính lực ở mỗi tần số của phổ thính giác. Một âm kế ngoài việc được trang bị một ống nghe để thử dẫn truyền khí của tai còn được trang bị một máy rung cơ học để thử dẫn truyền xương từ quá trình chũm của hộp sọ vào trong ốc tai.
Thính lực đồ của điếc thần kinh. Trong điếc thần kinh, bao gồm những tổn hại về ốc tai, thần kinh thính giác hoặc hệ thần kinh trung ương, sẽ khiến mất khả năng nghe âm thanh khi được thử bởi cảdẫn truyền khí và dẫn truyền xương. Một thính lực đồ mô tả điếc thần kinh một phần được thể hiện trên Hình 53-12. Trong hình này, điếc chủ yếu xảy ra ở âm thanh tần số cao. Loại điếc này có thể gây ra bởi sự phá hủy nền ốc tai. Loại này xảy ra với hầu hết người cao tuổi.
Các dạng khác của điếc thần kinh thường xuyên xảy ra như sau: (1) điếc với âm thanh tần số thấp gây ra bởi việc chịu đựng với âm thanh lớn quá mức trong thời gian dài (ví dụ một ban nhạc rock hoặc động cơ máy bay phản lực), bởi vì âm thanh tần số thấp luôn luôn lớn hơn và phá hủy nhiều hơn tới cơ quan Corti,và(2) điếc với tất cả các tần số gây ra bởi các thuốc nhạy cảm của cơ quan Corti—đặc biệt là nhạy cảm với một số kháng sinh như streptomycin, gentamicin, kanamycin và chloramphenicol.
Thính lực đồ của điếc dẫn truyền tai giữa. Loạiđiếc thông thường gây ra bởi xơ hóa tai giữa sau khi nhiễm trùng tái phát nhiều lần hoặc bởi sự xơ hóa xảy ra trong bệnh di truyền có tên là bệnh xốp xơ tai (otosclerosis) Cả hai trường hợp sóng âm đều không thể truyền đi một cách dễ dàng từ màng nhĩ qua các xương con để đến cửa sổ bầu dục. Hình 53-13 cho thấy một thính lực đồ của một ngườibị “điếc dẫn truyền tai giữa”. Trong trường hợp này, dẫn truyền xương về cơ bản làbình thường, nhưng sự dẫn truyền qua hệ thống xương con lại giảm nghiêm trọng ở mọi tần số, giảm nhiều hơn nữa ở các tần số thấp. Trong một số ví dụ về điếc dẫn truyền, nền của xương bàn đạp trở nên “akylosed” bởi xương vượt ra quá ranh giới của cửa sổ bầu dục. Trong trường hợp này, bệnh nhân sẽ điếc hoàn toàn khi âm thanh dẫn truyền qua xương con nhưng có thể phục hồi chức năng nghe gần như bình thường sau khi phẫu thuật lấy bỏ xương bàn đạp và thay thế nó bằng một trụ dẫn nhân tạo Teflon hoặc bằng một bản kim loại và nó có thể ruyền âm thanh từ xương đe tới cửa sổ bầu dục.
Bài viết được dịch từ sách: Guyton and Hall text book of Medicine and Physiology